On the Time Dependent Gross Pitaevskii- and Hartree Equation

نویسنده

  • P. Pickl
چکیده

We are interested in solutions Ψt of the Schrödinger equation of N interacting bosons under the influence of a time dependent external field, where the range and the coupling constant of the interaction scale with N in such a way, that the interaction energy per particle stays more or less constant. Let N0 be the particle number operator with respect to some φ0 ∈ L (R → C). Assume that the relative particle number of the initial wave function N−1〈Ψ0,N 0Ψ0〉 converges to one as N → ∞. We shall show that we can find a φt ∈ L (R → C) such that limN→∞ N −1〈Ψt,N Ψt〉 = 1 and that φt is — dependent of the scaling of the range of the interaction — solution of the Gross-Pitaevskii or Hartree equation. We shall also show that under additional decay conditions of φt the limit can be taken uniform in t < ∞ and that convergence of the relative particle number implies convergence of the k-particle density matrices of Ψt.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagrangian Densities and Principle of Least Action in Nonrelativistic Quantum Mechanics

The Principle of Least Action is used with a simple Lagrangian density, involving second-order derivatives of the wave function, to obtain the Schrödinger equation. A Hamiltonian density obtained from this simple Lagrangian density shows that Hamilton’s equations also give the Schrödinger equation. This simple Lagrangian density is equivalent to a standard Lagrangian density with first-order de...

متن کامل

On the Gross-Pitaevskii equation for trapped dipolar quantum gases

We study the time-dependent Gross–Pitaevskii equation describing Bose–Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimension-reduction for this nonlinear and nonlocal Schrödinger equation.

متن کامل

A Spectral Integral Equation Solution of the Gross-Pitaevskii Equation

The Gross-Pitaevskii equation (GPE), that describes the wave function of a number of coherent Bose particles contained in a trap, contains the cube of the normalized wave function, times a factor proportional to the number of coherent atoms. The square of the wave function, times the above mentioned factor, is defined as the Hartree potential. A method implemented here for the numerical solutio...

متن کامل

Bounds on the tight-binding approximation for the Gross–Pitaevskii equation with a periodic potential

We justify the validity of the discrete nonlinear Schrödinger equation for the tight-binding approximation in the context of the Gross–Pitaevskii equation with a periodic potential. Our construction of the periodic potential and the associated Wannier functions is based on the previous work [7], while our analysis involving energy estimates and Gronwall’s inequality addresses time-dependent loc...

متن کامل

Rigorous derivation of the Gross-Pitaevskii equation.

The time-dependent Gross-Pitaevskii equation describes the dynamics of initially trapped Bose-Einstein condensates. We present a rigorous proof of this fact starting from a many-body bosonic Schrödinger equation with a short-scale repulsive interaction in the dilute limit. Our proof shows the persistence of an explicit short-scale correlation structure in the condensate.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008